
Security
Assessment
For NFTULOAN
6 July 2022

@ascendantproj
www.ascendant.finance

Ascendant

Smart Contract



Table of
Contents

3 Disclaimer

4 Executive Summary

5 Overview

6 Findings Summary & Legend

7 Issue Checking Status
Audit Findings
Functional Test Status

Manual Review

18 Solidity Static Analysis
Unified Model Language

Automated Review

22 Conclusion



DISCLAIMER
Ascendant Finance (“Ascendant”) has conducted an independent audit to verify the integrity of

and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in the
codes that were provided for the scope of this audit. This audit report does not constitute

agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate

solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,

vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written

assent, acquiescence or approval by Ascendant.
All information provided in this report does not constitute financial or investment advice, nor

should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is

provided ‘as is’, and Ascendant is under no covenant to the completeness, accuracy or solidity of
the contracts audited. In no event will Ascendant or its partners, employees, agents or parties

related to the provision of this audit report be liable to any parties for, or lack thereof, decisions
and/or actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and

safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision

of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the

contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Ascendant retains full rights over all intellectual property (including expertise and new attack or
exploit vectors) discovered during the audit process. Ascendant is therefore allowed and expected

to re-use this knowledge in subsequent audits and to inform existing projects that may have
similar vulnerabilities. Ascendant may, at its discretion, claim bug bounties from third-parties

while doing so.
 



  

    High 2

    Medium 0

    Low 5

    Informational 53

Total 60

Executive Summary

Severity Found

Truffle
Remix IDE
Slither

We performed an independent technical audit to identify Smart
Contracts uncertainties. This shall protect the code from illegitimate
authorization attempts or external & internal threats of any type. This
also ensures end-to-end proofing of the contract from frauds. The audit
was performed semi-manually. We analyzed the Smart Contracts code
line-by-line and used an automation tool to report any suspicious code. 

The following tools were used:



Name Location

ULoanContract.sol Not deployed

iNFT.sol In ULoanContract

Ownable.sol In ULoanContract

IERC721Receiver.sol In ULoanContract

ReentrancyGuard.sol In ULoanContract

Context.sol In ULoanContract

This report has been prepared for NFTULoan on the Ethereum network.
Ascendant provides a user-centered examination of the smart contracts
to look for vulnerabilities, logic errors or other issues from both an
internal and external perspective.

Overview

Summary

Contracts Assessed

Project Name NFTULoan

Platform Ethereum

Language Solidity



  

    High 2

    Medium 0

    Low 5

    Informational 53

Total 60

Findings Summary
Severity Found

  

    High

Exploits, vulnerabilities or errors that will certainly or
probabilistically lead towards loss of funds, control, or impairment
of the contract and its functions. Issues under this classification are
recommended to be fixed with utmost urgency. 

 

    Medium
Bugs or issues that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended
to be fixed as soon as possible.

    Low
Effects are minimal in isolation and do not pose a significant
danger to the project or its users. Issues under this classification are
recommended to be fixed nonetheless.

    Informational
Consistency, syntax or style best practices,
Generally pose a negligible level of risk, if any.

 

Classification of Issues



Manual Review



Issues Checking Status
Issue Description Checking Status

Compiler errors PASS

Race conditions and Reentrancy. Cross-
function race conditions.

PASS

Possible delays in data delivery. PASS

Oracle calls. PASS

Front running. PASS

Timestamp dependence. PASS

Integer Overflow and Underflow. PASS

DoS with Revert. PASS

DoS with block gas limit. PASS

Methods execution permissions. PASS

Economy model of the contract. PASS

The impact of the exchange rate on the logic. PASS

Private user data leaks. PASS

Malicious Event log. PASS

Scoping and Declarations. PASS

Uninitialized storage pointers. PASS



Arithmetic accuracy. PASS

Design Logic. PASS

Cross-function race conditions. PASS

Safe Open Zeppelin contracts implementation
and usage.

PASS

Fallback function security. PASS



Severity High

Contract UContractLoan.sol

Description Strict equality

Code Snippet
817: require(msg.value ==
priceToPay, "Bad amount");

Recommendation

Replace "==" with ">=" Strict
equalities should be avoided due to

rounding errors that can occur
when sending a specific amount.

Status AMENDED

Audit Findings



Severity High

Contract UContractLoan.sol

Description Strict Equality

Code Snippet
874: require(msg.value==loan.resalesPrice,  
 "Invalid price");

Recommendation
Replace "==" with ">=" Strict equalities should be
avoided due to rounding errors that can occur
when sending a specific amount.

Status AMENDED



Severity Low

Contract UContractLoan.sol

Description Lack of Zero Check

Code Snippet

function setAdmin(address newAdmin) public
onlyOwner {
 address previousAdmin = _admin;
 _admin = newAdmin;

 emit AdminChanged(previousAdmin,
newAdmin);
 }

Recommendation
Add a require statement that requires the new
owner address to not be address(0), or the zero
address. 

Status AMENDED



Severity Low

Contract UContractLoan.sol

Description Lack of Zero Check

Code Snippet

function setServiceWallet(address newAddr)
external onlyOwner {
 address oldWallet = serviceWallet;
 serviceWallet = newAddr;

 emit SetServiceWallet(oldWallet, newAddr);
 }

Recommendation
Add a require statement that requires the new
owner address to not be address(0), or the zero
address. 

Status AMENDED



Function Name Type/Return
Type Score

loanAfterLockingInSec private PASS

minLenderLockDurationInSec private PASS

minFundingInWei private PASS

serviceWallet private PASS

signHeader private PASS

proposedHashes private PASS

lentNfts private PASS

marketSalesFeeInM100 read/public PASS

loanableFund read/public PASS

serviceFeePercentInM100 read/public PASS

interestFeePercentInM100 read/public PASS

maxLoanablePercentInM100 read/public PASS

withdrawLockingDuration read/public PASS

operators read/public PASS

registeredOperators read/public PASS

registeredNftCollections read/public PASS

nftCollections read/public PASS

registeredLenders read/public PASS

Functional Test Status



operatorList read/public PASS

lenderList read/public PASS

lenderFundList read/public PASS

withdrawList read/public PASS

loanList read/public PASS

loanFunds read/public PASS

tagFundsForLoanCreation internal PASS

setNftCollectionEx internal PASS

createLenderAndAddFund payable/public PASS

addFund payable/public PASS

closeLoan payable/public PASS

saleLoanOnMarket payable/public PASS

listOperators read/public PASS

getOperatorCount read/public PASS

setServiceWallet write/public PASS

setFee write/public PASS

setResaleFee write/public PASS

getMaxLoanablePercent read/public PASS

setMaxLoanablePercent write/public PASS

askToUnlockFund write/public PASS



withdrawFund write/public PASS

getWithdrawCount read/public PASS

getWithdrawLockingDuration read/public PASS

setWithdrawLockingDuration write/public PASS

setLenderAutoLoaningMode write/public PASS

lenderExists read/public PASS

getLenderIndexByAddress read/public PASS

getLenderIndexesByAddress read/public PASS

getLendersFundCount read/public PASS

isAmountLoanable read/public PASS

createLoan write/public PASS

setNftCollections write/public PASS

isNftCollectionEnabled read/public PASS

sendBackUnlentNft write/public PASS

setLoanAsAHotdeal write/public PASS

changeLoanPriceOnMarket write/public PASS

getLender read/public PASS

getLenderCount read/public PASS

listLendersByIndexes read/public PASS

listLendersFunds read/public PASS

listFunds read/public PASS



getLoan read/public PASS

getLoanCount read/public PASS

listLoans read/public PASS

getWithdraw read/public PASS

listWithdraws read/public PASS

getEthBalance read/public PASS

getLoanableFund write/public PASS

getMinFundinginWei write/public PASS

setOperator write/public PASS

checkIfNftAlreadyTransfered read/public PASS

TLender read/public PASS

TFund read/public PASS

TWithdraw read/public PASS

TLoanLenderFund read/public PASS

TLoan read/public PASS

TNftCollection read/public PASS

TOperator read/public PASS



Automated Review



Issue Severity

Check-effects-interaction:
NOTE: All flags for checks-effects-interactions have
been downgraded from MEDIUM to LOW due to the
utilization of Reentrancy Guard.

Potential violation of Checks-Effects-Interaction pattern
in ULoanContract.withdrawFund(uint256): Could
potentially lead to re-entrancy vulnerability. 

Pos: 478:8:

Low

Check-effects-interaction:

NOTE: All flags for checks-effects-interactions have
been downgraded from MEDIUM to LOW due to the
utilization of Reentrancy Guard.

Potential violation of Checks-Effects-Interaction pattern
in
ULoanContract.createLoan(bytes32,uint8,bytes32,byte
s32,address,uint256,uint256,uint256,uint256,uint256,ui
nt256[]): Could potentially lead to re-entrancy
vulnerability. 

Pos: 610:8:

Low

Check-effects-interaction:

NOTE: All flags for checks-effects-interactions have
been downgraded from MEDIUM to LOW due to the
utilization of Reentrancy Guard.

Potential violation of Checks-Effects-Interaction pattern
in ULoanContract.closeLoan(uint256): Could potentially
lead to re-entrancy vulnerability. 

Pos: 717:8:

Low

Solidity Static Analysis



Check-effects-interaction:

NOTE: All flags for checks-effects-interactions have
been downgraded from MEDIUM to LOW due to the
utilization of Reentrancy Guard.

Potential violation of Checks-Effects-Interaction pattern
in
ULoanContract.saleLoanOnMarket(uint256,bytes32,uin
t8,bytes32,bytes32): Could potentially lead to re-
entrancy vulnerability. Note: Modifiers are currently not
considered by this static analysis.

Pos: 845:8:

Low

For loop over dynamic array:
Loops that do not have a fixed number of iterations, for
example, loops that depend on storage values, have to
be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of
gas. The number of iterations in a loop can grow
beyond the block gas limit which can cause the
complete contract to be stalled at a certain point.
Additionally, using unbounded loops incurs in a lot of
avoidable gas costs. Carefully test how many items at
maximum you can pass to such functions to make it
successful.

Low

getLenderFund
closeLoan
saleLoanOnMarket
setLoanAsAHotdeal
changeLoanPricesOnMarket
getLender
listLendersByIndexes
listFunds
getLoan
listLoans
getWithdraw
listWithdraws

Block.timestamp Dangerous Comparisons: Any
function that utilizes block.timestamp is vulnerable to
miner attack but usually only if block.timestamp is used
to affect the output of the function (e.g. randomness).
The following functions utilize block.timestamp:

Informational



 Unified Modeling Language(UML)



The smart contracts reviewed in this audit contain no critical
severity issues and all High to Medium issues have either been
corrected or acknowledged. 

Please check the disclaimer above and note, the audit makes no statements or warranties
on business model, investment attractiveness or code sustainability. The report is provided
for the only contract mentioned in the report and does not include any other potential
contracts deployed by Owner.

Conclusion



@ascendantproj
www.ascendant.finance

Ascendant


